取締評価調整会議
2001年5月14日～17日 ロシア・カムチャッカのベトロバプロフスクにて

ロシア、カムチャッカのベトロバプロフスクで開催された第1回目の取締評価調整会議（EECM）のため、2001年5月14日から17日まで、カナダ、日本、ロシア、それに合衆国の代表が集まった。EECMについては、2000年11月のNPAFC年次総会開催中、取締事務局（ENFO）にて提案、承認されていたもので、ロシアが主催を申し出て、ロシア連邦国境警備隊の北東地域局（NRD-FBS）が準備にあたった。ベトロバプロフスク滞在中、参加者たちは合衆国沿岸警備隊の監視機C-130に搭乗して条約水域内のバトロールを行い、水産加工業組合とサケの孵化場を見学した。

会議では、ヴラジミール・フェデレンコNPAFC事務局長と、ENFO議長ウィンセント・オーシェイ大尉の代理としてグレッグ・プッシュ少佐のあいさつを開催した。各国側が取締活動とその成果について報告、特設監視活動調整グループの活動を評価し、2001年後半の取締活動計画、公海流し網漁業（HSDN）取締りの業務を負う機関の組織構造、HSDNに関する連絡窓口、取締活動の改良と標準化のための情報ニーズなどが検討された。締約国は、これまでに得た教訓について広範な情報を交換したが、よりスムーズなコミュニケーションの推進、取締活動の調整、そして情報交換の重要性が指摘された。各国は、連絡窓口と情報交換の方法について確認した。

会議の取締実務上のハイライトとなったのが、合衆国沿岸警備隊の監視機C-130に史上初めて締約国の代表が搭乗し、カムチャッカのベトロバプロフスクでの見学を発表、条約水域をバトロールしたことがある。条約水域内では違法な活動は見られなかったが、ロシアの排他経済水域内および15海里において違法漁業を挙げたものの発見をした。条約水域内を監視していたロシア連邦国境警備隊の警備艇DZERZHINSKY号が急行、捜査・捜査を終了したところ、ロシアの国内法に違反して操業していたことが判明した。同漁船SAKHFRAKHT-3号は、海中に放置された流し網を回収させられたのち、港まで警備艇に護送され、当局に引き渡された。

今号の内容

2001年EECM
2001年RPCM
耳石温度標識ワークショップ
ロシア極東域における気候変動及び海洋生物の状態
日本系シロザケ資源減少に伴う体サイズの大型化
事務局からのお知らせ

C-130飛行後のEECM参加者
（写真提供：グレッグ・プッシュ）
調査計画調整会議

2001年3月19～20日
合衆国ワシントン州シアトルにて

今年3月、NPAFCの調査計画調整会議グループ（RPCG）が合衆国のシアトルにおいて会合した。フラン・アルマーネPNAFC議長は、開会のあいさつでサケ類と環境変化に関する問題についてまとめ、長期にわたる大規模な国際的共同研究が重要であり、サケ類に関する基礎知識を得るには、各国が一貫してデータ収集することが必要だと指摘した。また、こうした研究調査については、NPAFCが調整役として向いている点を強調、RPCGに対して、プロジェクト中心の計画を立てるよう促した。さらに、RPCGは、2001年のCSRS作業計画、調査航海、生物標本及びデータ並びに人材の交換、出版物、そして関連する国際機関との協力について討議した。

科学小委員会（SSC）
科学小委員会は、ベーリング海のサケ類に関する共同調査を含む、各国の研究計画並びにNPAFC出版物、具体的には、2000年10月29日東京で開催されたサケ・すます幼魚ワークショップのレビュー報告の出版について討議した。SSCは、ベーリング海のさまざまな海域を対象にした調査について検討し、それらの実施に向けて、（1）ベーリング海のサケ類研究に関する提案をまとめる、（2）各締約国の代表に提案を配布して、検討・修正をしてもらう、（3）最終修正案をNPAFC議長に提出してさらに検討してもらい、財政援助を求めるという計画を勧告した。また、幼魚ワークショップの論文のフォーマット、レビュー方法、それに最終版について討議して、決議を採択した。

資源評価に関する作業部会
本作業部会は、漁獲統計の報告及び「北太平洋生態系現状報告」のNPAFC提供データを検討し、2001年10月の年次会議で報告できるよう、漁獲統計をまとめるうえに合意した。これには、1970年から2000年までの漁獲記録と2001年漁期の暫定値が含まれる。また、2001年の漁獲統計暫定報告には、主要な漁場や系群の概要も含めることになった。2000年漁期の最終漁獲統計については、まだ揃っていない締約国もあるが、これについては次回会議で提出される。PICESの「北太平洋生態系現状報告」について
は、漁獲、漁況及び孵化放流の時系列的データの有無について、情報提供することに合意した。提供データについては、魚種、漁場及び地域別とし、各国で具体的に決めることがになった。そして、これをもとに北太平洋のサケ類系群の現状報告のためのデータを選定する。また、これは、PICESの「現状報告」のNPAFC掲載分となるほか、2002年3月の北太平洋、北東西及び北ウルフ海のサケ類の海洋死亡に関する合同会議で発表することも可能である。

サケ類標識に関する作業部会

本作業部会は、1）各国の標識が重複するのを避けための調整、2）放流標識パターンの統合データベースの構築及びインターネットによるデータベースへのアクセス、3）サケ類耳石標識に関するワークショップのプロシーディングの出版という3点について検討した。そして、標識標識に際して生じる問題を最小限にするため、国あるいは地域ごとに標識コーディネーターを設けることで合意し、当面は作業部会メンバーがその役目を務めることになった。共通データベースのフォーマットについても締約国で合意がまとまり、暫定的なデータをスプレッドシートに入力事務局が保管している。ウェブサイトのデザインやレイアウト案については、日本が提案して、それが承認された。サイトからアクセスできるように、データをデータベースに移行するタイミングについては、事務局側の人材的・時間的余力と合衆国の支援にかかってくる。サケ類耳石標識ワークショップについては、今後の年次会議までにプロシーディングが出版される。ワークショップのコーディネーターがその編集者を務める。

系群識別に関する暫定作業部会

現行の遺伝的(アロイザム)データベースの状態が検討された。マスノスケに関するもっとも最近のデータベースは1999年本委員会に提出された。標準化されたベニザケの基準群については、合衆国のいくつかの研究所が現在調整中である。各研究所、もともと出現頻度の高い対立遺伝子から、各研究所内で標準化された対立遺伝子サンプルを35から70個、アンカレジのアラスカ州政府魚類狩猟局に提供し、同局が分析する。各研究所の基準群を組み合わせたのち、シミュレーションを実施して基準群のテストを行う。また、環太平洋地域の識別可能なベニザケ系群を扱ったNPAFC文書の提出が2001年に予定されている。シロザケのデータベースは各締約国で広範にテストされて用いられているが、新しく提出されたデータをもとに現在かなりの改訂が進められている。ロシア、日本及び合衆国（アラスカ）の（未発表の）新しいデータに加え、アラスカ南東部、ブリティッシュコロンビア州及びワシントン州の117の個体群に関する公表済みデータが付け加えられる。これは、2001年に希望する締約国に公表され、2001年の年次会議で作成される文書内では正式にレビューされる。

関連する国際組織との協力

パトリシア・リヴィングストンPICES代表が、「北太平洋生態系現状報告」及び2001年3月7日から9日までハワイのホノルルで開催された「北太平洋における生態系と生物多様性の変化の現状と将来に及ぼす気候変動の影響」に関するワークショップについて発表した。一方、石田行正CSRS議長がNPAFC、NASCO、IBSFとその他の国際組織との関係を、特に北太平洋、北東西及び北ウルフ海におけるサケ類の海洋死亡に関する合同科学会議の準備状況について報告し、開催期日（2002年3月14日）に、面会の議事日程その他の関連案件について、RPCGのメンバーの合意を得た。議論結果については、事務局がNASCOとIBSFに提出して検討してもらうことになった。

石田行正
CSRS議長

RPCMにて、フラン・アルマーNPAFC議長と
石田行正CSRS議長
(写真提供：NPAFC)
サケ類耳石標識に関するワークショップ

2001年3月21日 合衆国ワシントン州シアトルにて

北太平洋側河性魚類委員会（NPAFC）が合衆国ワシントン州シアトルにて2001年3月21日に「サケ類耳石標識」に関する国際ワークショップを開催した。サケ類の耳石標識技術はこの20年でずいぶんと進歩し、太平洋サケ類の管理と生物学情報の得るため、環太平洋諸国は、標識された幼稚魚を大量に放流してきた。ワークショップの目的は、最近の耳石標識技術及びその適用技術について、各国間で情報交換することである。ワークショップには70人が参加して、口頭発表が14題、ポスター発表が3題あった。

小さな稚魚を傷つけずにいかに標識を施すかという問題は、長い間サケ類の研究者や管理者を悩ませてきた。耳石温度標識は広く実施されている方法で、発眠卵期または卵黄吸収期に孵化場の水温変化をコントロールすることによって、大量のサケ類の耳石に明確なパターンを作って標識を施すものである。ロシアの科学者が開発したドライ標識でも同じようなパターンができるが、これは特別の装置なしで質の高い耳石標識が可能である。温度標識やドライ標識による独特の標識パターンは数が限られているため、補填する意味で、ストロンチウムや蛍光物質を使って化学的に標識を施すこともある。

2000年には、環北太平洋諸国の中は耳石標識を施行されたサケ類の幼稚魚およそ10億尾が放流された。どのような標識パターンを施すかについて系統だった規則がないまま、多くの標識が行なわれてきた。系統だった耳石標識パターンのための標準システムがあれば、パターンの種類が大きく増え、混合系群の分析の際に各国の標識が重複するのを避けるための調整が可能となる。NPAFCのサケ類標識作業部会では、各国の耳石標識パターンの調整役として重要な役割を演じることになる。また、インターネットを通じてアクセスできる耳石標識を施した放流魚のデータベース構築にも大きな役割を果たす。

耳石標識技術をサケ類の生物学と管理にどのように適用できるか、それ知ることが重要である。

当初は、海洋生活期初期における野生産と孵化場産サケ類を区別する科学調査に利用された。最近では、耳石標識を施されたサケ類の数が飛躍的に増えたため、沿岸水域から沖合いまで、特定の系群の海洋生活期全般の回遊を追うことが可能となった。現在では、サケ類の海洋分布、回遊速度、豊度、摂餌、成長、耳石標識魚の違いこま、そして野生のものと孵化場産サケ類の相互作用について、耳石標識を利用した研究がなされている。

また、近年では、資源評価と漁場管理に耳石標識を利用する例が増えていっている。アラスカでは、漁期の資源管理に耳石標識・再捕プログラムを使う方法が定着している。自然産卵個体が全体に、孵化場産のものがどれだけ貢献しているかを予測するツールとして、大量耳石標識は有効で、野生のサケ類個体群に対する孵化場産サケ類の影響を最小限にするためにも、この情報は極めて重要になっている。

環北太平洋諸国（カナダ、日本、ロシア及び合衆国）は、共通のルールに則って耳石標識を施したサケ類の大量放流に成功している。再捕した耳石標識サケ類のデータによって、系群別の時系列の生物学情報の収集が可能になるが、これは北太平洋のサケ類資源の持続的保存に不可欠である。

浦和 茂彦
ワークショップ組織委員会共同議長
ロシア極東域における気候変動及び海洋生物の状態

ロシア極東海域の主要な漁獲対象種を含む、太平洋の北部域の海洋生物資源の変動と気候変動との関係については、ロシアの科学者によく知られており、多くの研究で取り上げられている（クリャシュトーリン、1994年。モイスィエイェフ、1996年。シュントヴ他、1993年）。こうした変動は、当該地域の沿岸漁業や先住民に極めて重要であるため、これを「生命のうねり」と呼んでいるところもある。原則として、ライフサイクルの短い浮遊種がもっとも気候変動（大気の循環によって生じる水温の上下）の影響を受けやすい。太平洋の北部域では、マイワシ、カリフォルニアイワシ、ニシン、それに太平洋サケ類がこれに該当し、南部域では、太平洋イワシとマアジが該当する。また、最近の分析を見ると、スケットウダラの資源量も気候の変動に従って変動することが分かった。図1は、クリャシュトーリンのデータ（1996年）のもとづいて、太平洋の各魚種及び大西洋のニシンの20世紀における漁獲量の推移を表したものである。1930年から40年、それに1980年から90年にかけて、マイワシ、カリフォルニアイワシ、サケ及びスケットウダラの増加傾向はっきりと分かる。一方、太平洋ニシン、ペルーカタクチイワシ及び大西洋ニシンは同じ時期に減少を見せている（クリャシュトーリン、1996年）。

こうした現象の具体的なメカニズムはまだ明かになっていないが、北太平洋の海洋資源を管理したり漁業に関してどういった投資をするか決めるにあたっては、こうした要素を考慮に入れる必要がある。

漁獲圧及び環境条件と資源量に影響する気候変動の両方に水産資源がきわめて敏感なことが明らかになってきている。

ロシアの科学者は、20世紀の終わりから21世紀の始めにかけて北太平洋の海洋生態系に変化が生じると予測しているが、その結果、既に始まっているマイワシの減少だけでなく、サケ類やスケットウダラの資源量も減少する可能性があると同時に、ニシンはさらに増加するものと思われる。

図1 気候変化に影響される特定魚種の漁獲量の推移（クリャシュトーリン、1996年）

ヴァチェスラフ・K・ジラノフ教授
元NPAFC議長（1993-95年）
日本系シロザケは、孵化放流技術の進歩と好適な海洋環境から、1970年代後半から急速に資源量を増大してきた。北太平洋におけるサケ属魚類の資源変動は、長期的な気候変動に基づくことがこれまで明らかにされている。最近では、1980年代以降増大してきたサケ属魚類資源量は、新たなリズームシフトに基づき1995年を経て再び減少傾向にある。

さて、日本に回帰するシロザケは、資源の増大に伴い、体サイズが小型化し、平均成熟年齢が高齢化するがこれまでに明らかにされてきた。この体サイズの減少に関する要因については、これまで様々な仮説が示されられている。例えば、海洋の表層水温と塩分濃度の変化や、大型魚への漁獲圧の強化に基づく遺伝的選択、地球温暖化などである。われわれは、これまでに一貫してこの現象の要因はpopulation density-dependent effectであることを主張してきた。その理由として、①1980年代以降、北太平洋におけるサケ属魚類の生息環境が好転しており、日本系シロザケはバイオマスの増大とともに、その生残率も増加していること、②体サイズの減少と高齢化が同時に起こっていること、③小型化と高齢化が同時に起こり、捕獲採卵時に遺伝学的選別が働いた可能性がなかったことをあげてきた。

先にも示したように、北回道に回帰するシロザケは、1995年の約5,400万尾をピークにその後減少傾向を示し、2000年には約3,200万尾にまで減少した。図1には、1953～1999年の北海道におけるシロザケの回帰量と11河川の雌4歳魚の平均体長の経年変化を示した。図から明らかに、シロザケ親魚の体サイズは回帰量の減少に伴い、増加傾向を示している。シロザケのバイオマスと体サイズとの関係は、北海道(R²=0.745, P<0.001)のバイオマスより北太平洋全体のそれ(R²=0.762, P<0.001)の方が高い正の相関を示す（図2）。これらの現象は、体サイズの変化が明らかにそのバイオマスにより影響を受けたこと、すなわち個体群密度効果により起こっていることをあらためて示唆している。

ところで、北海道からの孵化場産シロザケ稚魚の放流数は、若干減少傾向はみられるものの、最近大きな変化はなく、毎年約10億尾放流されている。その放流方法も変わっていない。したがって、回帰量の減少は北海道系シロザケの生残率の低下を意味するものであると考えられる。
図2 北海道（A）と環北太平洋諸国（B）への回帰量と北海道の11河川に回帰した雌4歳魚の平均体長の関係

する。このことは、これまで危惧されてきた放流数の増大が回帰親魚の小型化高齢化をきたしているわけではないことを示しているのであるが、それでは何故、どこで生残率は低下したのであろうか？回帰親魚が大型化していることから、北太平洋における環境収容力の低下に原因があるとは思えない。かなり、北太平洋へ加入するまでの海洋初期生活期における減耗に起因するのであろうか？今後早急に解決していきたい研究課題である。
事務局からのお知らせ

北太平洋漁業課魚類委員会(NPAFC)，北大西洋サケ類保存機関（NASCO）及び国際バルト海漁業委員会(IBSFC) による「北太平洋、北大西洋及びバルト海のサケ類の海洋死亡に関する合同会議」が、2002年3月14日～15日にカナダのヴァンクーヴァーにて開催される。この会合では、サケ類の海洋における死亡の最近の変化に関する背景要因について情報交換することを目指し、北太平洋、北大西洋及びバルト海におけるサケ類の海洋死亡の増大を比較する。それによって近年の海洋死亡率の増大につながるメカニズムについて理解を深め、優先すべき研究課題を見つけ、今後の一層の協力と情報交換を促すことが期待されている。

暫定的議事日程

1. はじめに(開会のあいさつ)
2. サケ類資源及び漁業の状態
3. 海洋死亡の増大に関係するとみられる要因
 (a) 気候
 (b) 緊急、増殖、栽培漁業
 (c) 捕食及び競合
 (d) 回遊、スモルト後の生残及び育成海域
 (e) 生態系の変化とサケ類への影響
 (f) 淡水生活史
 (g) その他の関連要因

発表者

発表者は、NPAFC、NASCO、IBSFC及びその他の国際組織が指名し、組織委員会が選定する。

詳細については、www.npafc.orgまでどうぞ。

「第2回栽培漁業国際シンポジウム」（NPAFC共催）が2002年1月28日～2月1日、神戸で開催される。シンポジウムでは、幼稚魚放流技術及び増殖効果の評価技術、天然系の保護、放流魚の利用、そして具体的な栽培漁業計画について取りあげ、海水魚（サケ類を含む）、甲殻類、頭足類及び貝類などの漁獲対象種について検討する。詳細は、www.jasfa.or.jp/english/symposium/index.htmまでどうぞ。