INFORMATION ON TIME WHEN PACIFIC SALMON ARE CAUGHT BY GEARS
OBTAINED BY SIMULTANEOUS OPERATIONS OF LONGLINES AND GILLNETS

Fisheries Agency of Japan
(Kenji Takagi)
September 1969

INTRODUCTION

From April to May in 1967 one research vessel, Wakashio-maru, was operated for salmon study, particularly for pink salmon, in the area of the Subarctic Boundary in the northwestern Pacific Ocean (Figure 1). There were two main objectives in this cruise. The first objective was a detailed study of horizontal structure of salmon distribution in the area where pink salmon chiefly were distributed (Takagi, 1967). The second objective was to fish simultaneously with longlines and drift nets at different times of the day to obtain information on times when Pacific salmon are caught by salmon gears. In this report, results obtained with respect to the second objective are considered.

The comparative study of catches by longlines and drift nets has been reported (French, 1966; Shepard et al., 1967). In the present study, however, it was recognized that the effective time band when salmon are caught by surface longline gear is substantially short and definite. Therefore, catch per unit of effort of longline gear depends not on the duration of soaking time but on whether or not the set really works in an effective time band. The report will summarize this new information.

The details of each operation were decided on the vessel by the author who was aboard during the cruise.

A great deal of cooperation was given to field research by the crew of the Wakashio-maru, the training vessel of Atsukeshi Fishery High School, Hokkaido. Dr. Yabuta, Chief of the North Pacific Resource Division, and his staff gave useful advice for preparing this report. The author acknowledges their assistance.

METHOD AND MATERIALS

In the operation, at first, one day was divided into four time bands--namely, morning, daytime, evening, and nighttime, which are defined as having sunrise, noon, sunset, and midnight, respectively, as their central times. Longlines and drift nets were fished simultaneously in each time band. In this short-term simultaneous fishing, drift nets were set first and longlines were set next without delay. Longlines were hauled after 30 minutes, then drift nets were hauled immediately. In the nighttime operations, however, we began to haul in the longlines as soon
as the set was finished because of the technical difficulties of waiting. In these short-term operations, the average soaking time of longlines (from when setting was finished to the start of hauling) was 29 minutes, and the average soaking time of drift nets was two hours and 27 minutes. The total time required from the start of setting drift nets to the completion of hauling averaged three hours and 33 minutes, and the fishing operations were designed to keep either sunrise, noon, sunset, or midnight within the time of operation. At first, three short-term simultaneous fishing operations were to be conducted in each time band. However, in practice, a total of nine simultaneous operations were conducted—namely, three in the morning, two in the daytime, three in the evening and one in the nighttime, because of the bad weather (Table 1, 2).

Besides the above-mentioned simultaneous fishing, short-term continuous longline fishing was made in the two time bands of morning and evening. In this operation, each time band was further divided into three minor bands, and longline fishing was carried out continuously in each minor band. That is, the first set would be made before sunrise or sunset, and the line was hauled without waiting. When the first fishing was completed the second operation was initiated. The operation was repeated like this three times, and the third operation was completed after sunrise or sunset (Table 1).

The principal operations in the cruise were the above two fishing operations, namely short-term simultaneous fishing and short-term continuous longline fishing; however, independent longline fishing, overnight drift net fishing, and connected overnight simultaneous fishing of both gears were conducted supplementally (Table 1).

Longline gear commonly used in the salmon fishing was used in this research, that is, there are 49 branch lines with No. 7 Kakagata pink hook on main line of length 135 m, and salted anchovy was used as bait. The non-mesh-selective gillnets designed to eliminate mesh selectivity (Ishida et al., 1956) were used. These are composed of the same number of nets in five grades of mesh sizes—namely, 55 mm, 72 mm, 93 mm, 121 mm, and 157 mm. (Note. It is called standard drift net for research work.) Thirty hachi of longline and 50 tans of standard drift net for research work were used in the short-term simultaneous fishing and 20 hachi of longlines were set in the short-term continuous longline fishing. Fifty tans of standard drift net for research work were set with five tans of commercial drift net (112 mm) on each end. However, consideration in the present report is given only to catches by 50 tans of standard drift net (Takagi and Ishida, 1969).

Longline catches were recorded by hook, and drift net catches were recorded by tan. Biological measurement on board were made in respect to species, body length, body weight, sex identification, gonad weight, etc., and scale samples and stomach samples were collected for laboratory tests.

RESULTS AND DISCUSSION

The diurnal habits of salmon seem to have an effect on their availability at different times of the day to the gears—namely longline and drift
net. Based on this thought, short-term simultaneous fishing by longlines and drift nets were conducted at different times—morning, daytime, evening, and nighttime—and the differences in catches by the two gears were considered. Further, to examine closely the relation between catch per unit of effort and time when the salmon were caught, short-term continuous longline fishing was conducted, and the differences in catches by time were considered. Also, based on these considerations, we studied how duration of soaking time of longlines should be taken into account in standardizing longline effort.

Short-term simultaneous fishing

A total of nine short-term simultaneous operations were completed from May 1 to May 22. The stations were distributed in the area 43°N-44°N and 165°E-176°E (Figure 1, Table 1, 2). Considering times and locations, these nine operations are divided into three groups. Group No. 1 includes operations conducted between May 1 to May 4 around 44°N, 175°E; there were four operations, one in each time band (morning, daytime, evening and nighttime). Group No. 2 includes operations conducted from May 10 to May 14 around 44°N, 170°E; there were four operations, two in the morning time band and one each in the daytime and evening time bands. Group No. 3 includes a single operation on May 22 near 43°N, 165°E in the evening time band (Table 2).

Catch number per unit of effort (catch number per tan and catch number per hachi) obtained through the operations were arranged by time band and are shown in Figure 2. The following tendencies were seen clearly in Figure 2; that is, salmon were caught both by longlines and drift nets in the morning and evening; however, in the nighttime there was no catch by longlines but salmon were caught by drift nets. Catching efficiency decreased in both longlines and drift nets in the daytime.

As mentioned before, the stations at which these operations took place were isolated from each other in time and in space and therefore the results summarized in Figure 2 cannot be regarded as being operations which fished the same school. However, the same tendency was recognized in the results of Group No. 1 (May 1-4, 44°N-175°E; St. 5, 6, 7 and 8), which can be considered to be operations on approximately the same school because the stations were near to each other in time and space (Figure 3). Though there was no nighttime fishing, the same tendency is recognized also in Group No. 2 (St. 13, 14, 15 and 16).

Besides, the following features are noted when the results of Stations 5 and 6 and Stations 14 and 16 are compared—that is, CPUE's of drift nets were substantially lower than those of longlines in the morning operations, whereas in the evening operations CPUE's of drift nets were not so low, or somewhat better sometimes, than those of longlines (Figure 3). It seems that there are many factors which affect variation in CPUE (Takagi and Ishida, 1969). However, there is some concern that the operational procedures for this experiment which were adopted at the beginning of the cruise were disadvantageous to the results of drift nets. That is, the procedures were designed so as to have the completion of the longline set coincide approximately with the sunrise at Station 5, and so
as to have the start of the longline set coincide approximately with the
sunset at Station 14 (Table 1). For this reason, the completion of the
drift net set was just before sunrise, so that almost all of the soaking
time was after sunrise. On the contrary, in the evening operation, more
than half of the soaking time of the drift nets was in the evening twilight
(Table 1). In this way, a greater part of the soaking time of the drift nets
was biased to the time after sunrise in the morning operation, and this
makes the drift net seem less efficient. By advancing the start of the
simultaneous fishing operation in the morning at Station 15, the procedure
was improved so that the midpoint of the longline waiting period (the time
between completion of setting and start of hauling) coincided with sunrise.
As a result, about one-quarter of the drift net soaking time was in the
early morning before sunrise (Table 1), and the CPUE increased slightly
over the results from Station 14, which was at the same location on the
previous day (Figure 3, Table 2).

On the basis of the above points, a hypothesis was built up as
shown in Figure 4. That is, the effective time band for catching salmon
by surface drift nets is mainly the period of darkness including twilight
from the sunset to the next sunrise, and, on the other hand, the effective
time band of longlines is around sunset and around sunrise. The
effective time band will vary with each salmon species, and possibly will
vary also by time and space even with the same species. However, in this
experiment directed at pink salmon in April and May, the above hypothesis
seems to be satisfied.

Shepard et al. (1967), testing longline fishing at various times
of the day, indicated that the highest catch per hook was attained at
sunrise and that there was a second peak at sunset, at which time the
catch was better than at night. In relation to the daily vertical move-
ments of salmon (Manzer et al., 1959; Neave, 1960; Manzer, 1964;
Machidori, 1966, 1967, 1968) it has been said that the rate of being
cought by surface drift nets rose at night from sunset to sunrise
(Taguchi, 1963; Mishima et al., 1966).

Factors which affect the catch efficiency at different times of the
day of longlines and drift nets, and which seem to require study are: daily
vertical movements; sense of eyesight relating to illumination (feeding
by sight, avoiding net by sight, etc.); diurnal patterns of movement,
feeding and sleeping of fish itself; etc. Besides, an analysis of
stomach contents which were collected in this cruise is under progress.

On the basis of these results, we cannot discuss a more detailed
change of catch rate by surface drift nets in the effective time band from
sunset to sunrise. Figure 4 indicates that the length of effective time
band of drift net is longer than that of longline. Thus, in longline
fishing, an upper limit of CPUE (a value which concerns to the relative
density of fish) which would occur in a given circumstance will be attained
in a relatively short period of time. On the other hand, in drift net
fishing, since the duration of the effective time band is longer, it seems
to take a relatively longer period of time to attain an upper limit of
CPUE.
If other conditions were the same, the upper limit of CPUE seems to be a value which is related to the relative density of fish in that place, and it will be evaluated in a more practical manner along with an increase in knowledge of fish behavior such as movement in the area covered by the gear.

Short-term continuous longline fishing

It has been found by the above-mentioned simultaneous fishing in each time band that the CPUE of surface longlines is higher in the morning around sunrise and in the evening around sunset. Then, to examine more closely the relation between the time of operation and CPUE in the morning and evening time bands, short-term continuous longline fishing was carried out. Stations were selected near 43°N, 165°E and operations were in the four days from May 17 to May 20. The morning time band was covered in the first two days, and the evening time band was covered in the second two days.

Twenty hachi of longlines were used in each operation, and it took 15 minutes for setting and 40 minutes for hauling.

In this experiment hauling began at the end of the longline where the setting was completed—that is, the research vessel did not return to the end of the line where the fishing operation started. Also, hauling was started when setting was completed because of the requirement to repeat operations in a limited time period—that is, no waiting period was provided after completion of setting. A five minute time lag was provided between the completion of setting and the start of hauling for preparing the vessel and changing deck works. Thus, it took about one hour for one operation of 20 hachi of longlines.

(i) Short-term continuous longline fishing in the morning

In the operation at Station 17 on May 17, three one hour time bands were provided—that is, the first operation was designed to cover from two hours before sunrise to one hour before sunrise, corresponding to the hour before common twilight; the second operation was to cover from one hour before sunrise to sunrise, corresponding to the common twilight time band; and the third operation was to cover from sunrise to one hour after sunrise, corresponding to the hour after daybreak. The actual operations took a little more time than was intended.

Results in each operation are summarized in Table 2 and Figure 5. The catch at Station 17 was only one in the first operation, 36 in the second, and 20 in the third. The operation in the time band corresponding to common twilight produced the best CPUE, the next was the after sunrise operation, and the CPUE was very poor in the time band corresponding to the hour before common twilight. The results coincided with our expectation that the efficiency of longlines is low at dark and high at the time of increasing luminosity.

However, a clear feature is seen in the catch by hachi in the second and third operations. That is, in the second operation, no salmon were seen at the first eight hachi from
the start of hauling and salmon began to appear at the 9th to 14th hachi; there were substantial numbers of salmon after the 15th hachi. On the contrary, in the third operation salmon appeared right away at the 2nd hachi, while the same tendency was recognized as in the second operation for the latter 10 hachi of line to produce more salmon than the first 10 hachi.

As was mentioned above, hachi which was set last was hauled first, and the hachi which was set first was hauled last. If it is assumed that the hauling speed was constant, the soaking period of each hachi can be calculated definitely. The relations between soaking time and number of salmon caught by every two hachi are summarized in Figure 6. Horizontal axis of this figure is the mean soaking time of each two hachi, and also corresponds to the order of hauling.

In the second operation at Station 17, two reasons for the absence of catch in the first half of hachi can be suggested. The first reason is that the efficiency of hachi hauled in the first half of the hauling time has been decreased by the shortness of soaking time. The second reason is that in the time band when the second operation took place (common twilight), the setting of the lines and the first half of hauling were not included in the effective time band for catching salmon, and the latter half of hauling was in the effective time band (later than 10-15 minutes before sunrise). Accordingly, the CPUE increased sharply in the latter half of hauling.

As for the phenomenon of the third operation—that the poor catch was made in the first half of hauling compared with the last half—the first reason mentioned above seems to explain it, but the fact that salmon appeared as soon as the 2nd hachi seems to contradict it. The poor catch in the first half of the third operation cannot be explained by the second reason. However, in this case, it is thought that initiating the operation in the effective time band, rather than completing it, produced the phenomenon. That is to say, in the third operation, because the first half of setting the line took place in the effective time band (the first 15-20 minutes after sunrise), the hachi which were set in the latter half of setting (that is, the hachi which were hauled in the first half of hauling) only worked outside of the effective time band. Thus, the CPUE was not as good as that of hachi which were set first (that is, hauled in the latter half of hauling).

To decide the principal reason from those described above—namely, duration of soaking time or fishing in the effective time band, in the operation at Station 18 on May 18, the timing of the three one-hour operations was shifted a little toward sunrise. That is, the second operation was designed to correspond with the most effective time band (from 15 minutes before sunrise to 20 minutes after sunrise) by coinciding the start of hauling with sunrise. Actually, the second operation was started 20 minutes before sunrise and was completed 40 minutes after sunrise.

The results at Station 18 are shown in Table 2 and Figures 5 and 6. The first operation produced only one salmon, the second got 26, and
the third got only one again. That is, most of the catch was produced at the second operation, and the 1st and 3rd operations seemed to be outside of the effective time band. The results obtained at Station 18 corroborated the pertinence of the second reason. In the second operation at Station 18, the hachi which were hauled at the beginning of hauling were expected to catch salmon because the time was at the midpoint of the effective time band, and this expectation was borne out by the result (Figure 6). However, in this same operation (St. 18-2), as is shown in Figure 6, the catch by hachi hauled at the first half of hauling was less than that of the latter half. Thus, the factor of soaking time cannot be denied completely. Besides, consideration should be given in discussing this problem to the existence of small schools of salmon relating to the size of space where each longline gear is hung in the water.

Concerning the effect of soaking time, the relation between the length of soaking time and catch number per hachi is shown in Figures 7-1 and 7-2. In these figures, results are shown from 14 longline operations conducted in the morning and in the evening, other than continuous fishing operations (excepting St. 23). These results include nine 30-hachi operations, three 60-hachi operations, and two 80-hachi operations (Table 1, 2). In every case, there was a 30-40 minute waiting period between the end of setting and the start of hauling. It took about two hours when 30 hachi were used, about four hours for 60 hachi and about five hours for 80 hachi from the start of setting to the completion of hauling. As is seen in Figure 7-1 and Figure 7-2, although there is some degree of change in catch by hachi, which suggests the existence of small salmon schools, no tendency is recognizable for the catch to increase with the length of soaking time. In this figure, the solid lines parallel to the horizontal axis indicate the average catch per hachi at each station, and the dotted lines parallel to the horizontal axis indicate the average catch per hachi in that part of the catch which was used for tagging experiments and therefore was not recorded by hachi.

Thus, it was recognized that at Station 3 the catch was better at the end of hauling than at the beginning (dotted line), and on the contrary, at Stations 2 and 12 the catch was better at the beginning of hauling. Therefore, although it is difficult to evaluate the effect of soaking times less than 30 minutes, from the results of these 14 operations it can be concluded that soaking times longer than 30 minutes will not produce an increased catch.

With respect to the effect of soaking times less than 30 minutes, which were provided in short-term continuous fishing operations coincided to sunrise, we were able to evaluate by practical examinations. That is, the morning operation using 30 hachi of longline at Station 23 on May 24 was designed to that line setting started one hour and thirty minutes before sunrise and a 30-minute waiting period was allowed before hauling, which was started 40 minutes before sunrise. The results are shown in Figure 8. That is, in spite of a 30-minute waiting time, no salmon were seen on the 1st to 15th hachi. The first salmon was on the 16th hachi, which was hauled about 10 minutes before sunrise; then the richest hachi was hauled just after sunrise. This result obtained at Station 23 verified the results which had been obtained at Stations 17 and 18, namely the
effective time band for longline fishing is just before and after sunrise and the duration of this effective time band is quite short.

(ii) Short-term continuous longline fishing in the evening

The continuous longline fishing in the evening at Station 19 on May 19 was designed for repeated fishing in three one-hour time zones, and to finish hauling in the second operation at 20 minutes after sunset. Actually, hauling in the second operation terminated 15 minutes after sunset. The results are shown in Table 2 and Figure 9. The first operation (before sunset) produced four salmon, the second operation (around sunset) caught 11 salmon and no salmon were caught in the third operation (after sunset). Catch number by hachi in the first and second operations do not show any tendency suggesting the initiation of an effective time band as was shown in the morning operation (Figure 10).

The continuous fishing operation in the evening at Station 20 on May 20, to examine the effective time band around sunset, was designed so that the start of hauling in the second operation would coincide with sunset, and two one-hour time zones were provided before and after sunset. The first operation (before sunset) produced five salmon, and the second operation (after sunset) caught one salmon (Table 2, Figure 9).

The results of evening operations at Stations 19 and 20 suggested that the effective time band for longline in the evening would terminate shortly after sunset. However, it was not determined at what period before sunset the effective time band began. It is noted that the catch per hachi in evening operations was lower than that in morning operations (Table 2). In the morning operation at Station 21 on May 21 (the day following the previous evening operation) the catch per hachi was 2.5 fish. Therefore, the density of fish did not seem so low. On the next day (May 22), a 30-minute waiting time was provided in evening longline fishing at about the same location, and the catch per hachi was 1.7 salmon. Considering the results obtained at Stations 21 and 22 and Stations 19 and 20, a 30-minute waiting time seems to be more effective in evening fishing than in morning fishing. This question, and the questions of feeding habits of salmon and the existence of small schools, appear to require consideration.

EFFECTIVE EFFORT AND SOAKING TIME OF SALMON LONGLINES

In the standardization of longline effort, there are two items which have to be considered. One item has to do with the structure of the gear, such as number of hooks per hachi, size of hooks and their intervals, length and thickness of branch lines, etc., The other has to do with the technique of fishing, such as kind and size of bait, number of hachi used, direction of setting, etc. Setting time and soaking time of longline gear are factors of fishing technique.

As I mentioned above, the following two results were obtained by the present study: first, efficiency of surface longline gear on Pacific salmon is high in the morning and in the evening, and effective time bands
around sunrise or sunset are quite short. Secondly, since the effective
time band is short, it is thought that prolonging the soaking time
beyond 30 minutes will not increase the catch. That is, in the standard-
ization of longline effort, it is not important to evaluate the length
of soaking time, but to evaluate what percentage of the gear used works
within the effective time band. We were not able to confirm the effect
of soaking times less than 30 minutes in this experiment.

Thus, length of soaking time in the effective time band was
adopted as effective effort, and catch by hachi per unit of effective
effort was calculated. In this case, the effective time band was
assumed to be from 15 minutes before sunrise (or sunset) to 15 minutes
after.

Results of Stations 17, 18, and 23 are shown in Figure 11 as
an example. The horizontal axis represents time from sunrise, and the
vertical axis represents the order of hachi hauled. Trapezoid areas
formed by four points--namely, (A) beginning of set, (B) end of set,
(C) beginning of haul, and (D) end of haul--are regarded as the total
soaking times of the gear used. That part of the trapezoid area which
overlaps with the effective time band is regarded as the amount of
effective effort.

Effective effort at each station was calculated in this manner,
and then catch per unit of effective effort and the ordinary CPUE were
compared in Table 3. Original raw data used for calculation of effective
effort are shown in Table 2. As the stations which are shown in Table 3
are located closely in time and in space, it is assumed that the
operations fished the same school, and the results seem to serve as a
good comparison. Comparing the results of morning operations at the
same location (Table 3), it is recognized that the ratio of CPUE between
Station 12 and Station 14 is 100:33 before correction but is 100:100
after correction by effective effort. Similarly, for Stations 21 and
23 it is 100:32 before correction and 100:87 after correction. That is,
as one of the factors which affect the variation of CPUE, the degree of
agreement between the effective time band of surface longline fishing
for salmon and the time of setting is considered and, by standardization
of this factor, the catch per unit of effective effort will be a more
useful value as a scale to represent the relative abundance of the
school fished.

CPUE's by morning longline operations and by evening operations
were compared—that is, four pairs of stations which were closely located
in time and space were selected: St. 5 and 6, St. 10 and 11, St. 15 and
16, and St. 21 and 22. If the morning CPUE is represented by 100 before
correction evening CPUE is between 52 and 107 (average 70.8) and the
coefficient of variation is 35.7, but after correction evening CPUE
drops to between 42 and 81 (average 62.3) and the coefficient of variation
is 27.7. By these comparisons at the four locations, it is guessed that
catch efficiency of longlines in the morning is higher than in the
evening. It is hard to evaluate the ratio between them. However, in the
case of Stations 10 and 11, the morning CPUE was slightly lower than the
evening CPUE before correction, but after correction, as it was in the
other case, the morning CPUE was higher than the evening CPUE. In the case of Stations 5 and 6, the difference between the morning CPUE value and evening CPUE value was increased after correction. However, taking a general view of these four cases, the variation of evening CPUE against morning CPUE in the same location is decreased by correction. From this point of view, it has been guessed also that the corrected value approximates more closely the proportion of longline efficiency in the morning against that of the evening. But in any case, the range of variation is substantially wide, and much is left for future study.

In the future, reasons for differences between morning catch efficiency and evening catch efficiency seem to require more consideration in relation to the feeding habits of fish.

SUMMARY

1. In April and May 1969, the research vessel Wakashio-maru conducted an ecological study on Pacific salmon in the area around the Subarctic Boundary of the northwestern Pacific Ocean.

2. Each day was divided into four time bands—namely, morning, daytime, evening, and nighttime—and short-term simultaneous operations of longlines and drift nets were made in each time band. It was recognized that both longlines and drift net caught salmon effectively in the morning and in the evening, and salmon were caught by drift nets but not by longlines in the nighttime, and catch efficiency was decreased in both gears in the daytime.

3. Short-term continuous longline fishing was carried out in the morning and in the evening. It was recognized that effective time bands for longline fishing of Pacific salmon are around sunrise and sunset, and the length of the bands is quite short.

4. The effective time band for surface drift net fishing on Pacific salmon was estimated as a substantially long period of time from sunset to sunrise. On the contrary, it was recognized in the longline fishing that efficiency depended not on the length of soaking time but on whether or not the fishing time of the longlines occurs in the short period of the effective time band.

LITERATURE CITED

Information on time when Pacific salmon are caught by gears obtained by simultaneous operations of longlines and gillnets.

1969年9月
September, 1969
水産庁
Fisheries Agency of Japan
はななわと流し網の同時操業において得られたサケ・マスの漁獲される時刻に関する知見

高木 健治

まえがき

1969年の4月から5月にかけて、北西太平洋の漁獲帯境界近辺において、1隻の調査船岩得平丸によって主としてクラフトマスを対象とした調査を行なった（Fig. 1）。この調査には、2つの目的があった。その第1の目的は、主としてクラフトマスが分布している水域（高木1967）において、サケ・マスの水平的な分布構造を詳細に調べることであった。また第2の目的は、1日の異なる時刻におけるなわと流し網の同時操業を行ない、サケ・マスが漁獲される時刻についての知見を得ることであった。この報告は、第2の目的に関する調査結果を検討したものである。

すでにはななわと流し網によるサケ・マスの漁獲物の比較調査が行なわれているが（French 1966, Shepard et al. 1967）、この調査の結果、表層かはななわによってサケ・マスが漁獲される有効な時刻帯を、かなり短かくかつ明確であることが認められた。またそのために、はななわによって漁獲される単位効率当たり尾数は、漁具の網の開口時間の長さよりも、それが有効時刻帯に合致して設置されていたか否かによって左右されることなどの新しい知見がえられたのでここに報告する。

調査実施計画の細目は、この調査船に乗船した筆者が、船上において、その都度前日までの調査結果を検討しながら決めた。

本調査の実施にあたり、北海道厚岸水産高校練習船の若潮丸乗組員諸氏から多大の御協力をいただい、またこの小文をまとめるにあたり、遠洋水産研究所北洋資源部長の飯田博士はじめ部員各位から貴重な教訓をうけた。ことに記して以上の方々に深く感謝の意を表する。
方法および材料

この調査では、まずはじめに、1日を日出、正午、日没、真夜中にそれぞれ中心とした朝、昼、夕方、夜間の4つの異なる時刻帯に分けた。それらの各時刻帯の中で行なわれた。この短時間同時操業のやり方は、はじめに流し網を投網し、それが結果とすぐに続いてはえなわを投網し、約80分間繰り返しを行った後に、はえなわを揚網し、それが結果とすぐに続いて流し網を揚網するという方式であった。ただし、真夜中はえなわ操業の場合は、繰り返しをすることなく行われたので、投網後ただちに操業することとした。これらの短時間操業方式におけるはえなわの適中敷設時間（投網終了より揚網開始まで）は平均29分であり、流し網の適中敷設時間（投網終了より揚網開始まで）は平均2時間26分であった。また、投網開始から揚網終了までの全操業所要時間は平均3時間33分であり、これらの全操業時間の内に、それぞれ日出、正午、日没、真夜中に入るように計画された。当初の計画では、各時刻帯における短時間同時操業を3回ずつ行なう予定であったが、悪天候のために、実際には、朝方同時操業1回、昼間同時操業1回、夕方同時操業1回の合計3回が行なわれた（Table 1, 2）。

上記の短時間同時操業の他に、朝と夕方の2つの時刻帯の内で、短時間はえなわ連続操業を行なった。この操業のやり方は、各時刻帯をさらに、3つに小さく分け、その連続する3つの短い時刻帯の中で、それぞれはえなわの投揚繩を行なうという方式であった。すなわち、日出又は日没前にまず第1回目のはえなわを投網し、その後繰り返しをせずにそれを揚網し、第1回目の揚網終了後すぐに続いて第2回目のはえなわを投網するというように連続して投揚繩を3回繰り返し、第3回目の揚網終了が日出又は日没後になるようにするという方式であった（Table 1）。

この調査の操業方式は、上記の短時間同時操業と短時間はえなわ連続操業が主なものであったが、それら以外に補助的に行なわれた。すなわち、えなわ操業および朝方操業、ならびに両者を組み合わせた同時操業などが行なわれた（Table 1, 2）。

この調査で使用されたえなわは、ひろくサケ・マスはえなわ漁船によって使用されているものと同様、幹なわの長さが約135メートルに49本の角型7号のマスばりがついたものであり、網としては細トンネル型のものとされた。流し網としては、55メートル、72メートル、93メートル、121メートル、157メートルの5種類の異なる目合を同長ずつ組み合わせ、網具解析性を除くように設計されたもの（石田他，1966）が用いられた（選択過程における標準流し網）。

使用魚具数は、原則として短時間同時操業では、はえなわ30錠と調査用標準流し網50反（各目合10反）とし、短時間はえなわ連続操業では、はえなわ20錠とした。調査用標準流し網50反の使用の際には、その両側に漁網目合（112メートル）の総合5反が付けられたが、この報告に

— 2 —
は、その部分の資料を省き、調査用標準漁網50反の部分のみを扱う（高木、石田、1969）。

はえなわによる漁獲物の記録は、各釣分け行なわれ、また流し網の漁獲物は、原則として各反毎に記録された。船上での魚体測定は、魚種、体長、体重、性、生殖器重等などの項目について行なわれ、その際同時に、鰭および胃が採取された。鰭および胃内容物は、持ち帰り、研究室において検験した。

結果および考察

はえなわおよび流し網という異なる2種の漁具に対するサケ・マスのかとり具合は、サケ・マスの日周期活動のために、時刻の違いによって変化することが考えられる。このような考えに基づいて、朝・昼・夕・夜のそれぞれ異なる時刻で、はえなわと流し網の短時間同時操業を行なって、2種の漁具に対するサケ・マスのかとり方の違いを検討した。さらに、はえなわによる単位努力当たり漁獲尾数と漁獲時刻との関係をより詳細に調べるために、朝時間はえなわ連続操業を行なって、時刻の違いによるかぶり方の違いを検討した。またこれらの検討に基づいて、はえなわの努力量を標準化する場合に、漁具の海中敷設時間の長さという要素が、どの程度考慮されるべきかという点について考察を行なった。

短時間同時操業

前後9回にわたる短時間同時操業は、5月1日から5月22日までの間に行われた。それらの調査対象は、北緯43度から44度および東経165度から170度の範囲内であった（Fig 1, Table 1, 2）。これらの9回調査で、調査が行なわれた時期と場所からみて、おおよそ3つのグループに分けられる。すなわちその第1グループは、5月1日から5月4日かけて北緯44度、東経175度附近で行なわれたものであり、朝・昼・夕・夜の各時刻帯に1回ずつの合計4回の調査を含む。第2グループは、5月10日から5月14日かけて北緯44度、東経170度附近で行なわれたものであり、朝方2回、昼間1回、夕方1回の合計4回の調査を含む。第3のグループは5月22日に北緯43度、東経165度附近において夕方に行なわれた1回の調査である（Table 2）。

これらの調査を通じて得られた単位努力当たり漁獲尾数（1反当たり漁獲尾数および1魚当たり漁獲尾数）は、朝・昼・夕・夜の4つの時刻帯ごとにまとめて図示したもののがFig. 2である。

このFig. 2において次のような傾向が認められる。すなわち、朝方および夕方ににおいては、はえなわも流し網にともにサケ・マスが漁獲された。それに対し夜間においては、流し網にはサケ・マスが漁獲されていたにもかかわらず、はえなわで漁獲されなかった。また昼間においては、
はえなわおよび流し網の双方とも、その漁獲効率が低下した。

上述のように、これらの調査点は、時期・場所ともに異いにはなれており、Fig. 2 を同一魚群を対象とした調査結果と見做することはできない。しかし、上記の傾向は、調査時期と調査場所が近接し、近似的に同一魚群を対象としたと判断される第1グループ（5月1〜4日、44°N〜175°E；St5. 6. 7. 8）の調査結果においても明らかに認められる（Fig. 3）。また夜間の調査は欠けているが、第2グループ（St18. 14. 15. 16）においても同様な傾向が認められる。

なお、St5とSt6ならびにSt14とSt16の調査結果の比較において次のようなことが注目される。すなわち朝方の流し網の単位努力量当たり漁獲尾数が朝方のはえなわのそれに比べてかなり低いのに対して、夕方では、流し網の単位努力量当たり漁獲尾数は、はえなわのそれに比べてそれほど低くないかあるいはむしろ高いことである（Fig. 3）。単位努力量当たり漁獲尾数が変動する要因としては多くのものが考えられるが（高木・石田1969）、上記の現象の一つの原因として、当初の朝方同時操業の実施計画が、流し網に対してやや不利に働いていたのではないかということが推察された。すなわちSt. 5においては、はえなわの投繰終了がほど日出に一致するように計画され、St. 14においては、はえなわの投繰開始が、ほど日出一致するように計画された（Table 1）。そのため、これらの場合には、流し網の投繰終了が日出前あるいは日出直前にあって、海中漁獲時間の大部分は日出後の明るい時刻に対応した。これに対し、夕方同時操業の場合、流し網の海中漁獲時間の半分以上、日没後の落潮時間に対応していた（Table 1）。このように朝方同時操業の場合の流し網の海中漁獲時間の大部分が、日出後の明るい時刻の方へずれていることが懸念された。そこでSt. 15においては、朝方同時操業の開始時刻を早めて、昼間時間の間にはほど日出に一致するように計画を改めた。その結果、流し網の海中漁獲時間の約1/4が日出前の落潮時間に対応するようになり（Table 1）。流し網の1当たり漁獲尾数は、前日の同一場所におけるSt. 14のそれに比べてやや増加した（Fig. 3, Table 2）。

以上のことから、Fig. 4のような仮説が立てられた。すなわち、サケ・マスが表層の流し網によって漁獲される有効な時刻帯は、日没から翌日の日出までの、湯明、薄暮を含む煮して暗い時刻であり、他方、漁獲はえなわによって漁獲される有効な時刻帯は、日没後あるいは日出後ではないということである。このことは、サケ・マスの各魚種によって異なり、また同一魚種でも時期や場所によって異なる可能性が考えられるが、4〜5月のカラフトマスを主対象としたこの調査の限りでは、上記の仮説が成立つと考えられる。

Shepard et al (1967)は、いろいろな時刻にサケ・マスはえなわ試験を行なって、日出時に最も漁獲率が高いことを示し、日没時も夜間に高く、それに第2の漁獲率のピークがある

サケ・マスに対する表層はえなわおよび表層流し網の漁獲効率が時刻によって変化する要因としては、日周期性の滲海移動、層度と関連した視覚の働き（視覚によって感覚する、視覚によって網を避ける、など）、魚が自身に有する移動・捜撃、睡眠などの日周期性リズムなど多くのものと考えられるが、今後十分に検討されるべき問題であろう。なお、この調査において採集された魚中内物分析は、目下進中である。

この調査結果から、日没から日出までの表層流し網に有効な時刻帯の中での、さらに詳細な時刻に伴う発端の変化について論ずることはできない。Fig. 4 の想定図は、おもに初出で、流し網の有効時刻帯の時間的長さは、えなわのそれぞれに比較して長いことを意味する。このことは、次のことに関連づけられる。すなわち、えなわの場合、その有効時刻帯が時間的に短いために、その単位努力量当たり発端尾数が、その場所におけるある上限の数値（魚群の相対的密度と関連した数値）に到達するまでの時間は短いであろう。他方、流し網の場合は、その有効時刻帯が長いために、単位努力量当たり発端尾数は、有効時中敷設時間の長さの増加に伴って増加し、その場所におけるある上限の数値に到達するまでの所要時間は長いであろう。

他階の条件が同一の場合、これらの上限の値はその場所における魚群の相対的密度と関連した数値と見なされるが、漁具が置かれている空間内における魚群の移動状況などの生態に関する知見が増すことによって、今後より実態にそくして評価されるであろう。

短時間はえなわ連続操業

表層はえなわによるサケ・マスの単位努力量当たり発端尾数が多い時刻は、日没前後の朝方と日没前後の夕方であることが、前項の各時刻帯の同時操業の結果判明した。そこで、朝方および夕方の2つの時刻帯において、さらに時刻と発端率の関係を詳細に調べるために、短時間はえなわ連続操業を行なった。調査地点はいずれも北緯43度、東経165度附近であり、調査期間は5月17日より5月20日までの4日間であった。前半の2日間においては朝方の短時間連続操業が行なわれ、後半の2日間においては夕方の短時間連続操業が行なわれた。

1回の操業に使用した漁具数は200錨で、投繩に約15分間、揚繩には約40分間を要した。この調査においては、従来のえなわ操業と同様に、投繩終了後に投繩開始地点まで戻ることなく、投繩終了地点から揚繩を開始した。またこの連続操業においては、短時間内に投揚繩をくり返す必要があったために、操業を時間を設けず、投繩終了後ただちに揚繩を開始した。投繩終了と揚繩開始
始との間の時間は，船首方向の転換や，船上作業の切り替えのために約5分間が見込まれた。したがって1回の20銃発射を要する時間は約1時間であった。

(i) 朝方における短時間はえなお連続操業

5月17日のSt 17の朝方連続操業では，日出を境にして1時間毎の3つの小さな時間帯を設けて行なわれた。すなわち第1回目操業は日出2時間前から日出1時間前まで，第2回目操業は日出1時間前から日出まで，明るくなりかかる常温撮影に反対し，第3回目操業は日出から日出1時間後まで，日出後の明るくなつた時刻帯に反対するように計画された。実際の操業時間は計画時間より若干長かった。

各操業における調査結果は，Table 2およびFig 5に示されている。St 17における発射銃数は，第1回目操業では10銃であり，第2回目操業では8銃，第3回目操業では2銃であった。すなわち，単位労働当り発射銃数は，常温撮影に反対した時刻帯で多く，次いで日出直後に反対した時刻帯で多く，また常温撮影以前に反対した時刻帯ではほとんど発射されなかった。これらの結果は，えなおの発射効率は暗い時に低く，日出前の明るくなりつつある時に高いくらいであるという当初の予想に合致したものであった。

しかし，第2回目操業と第3回目操業との場合，各銃毎の発射状況が1つの特徴が見出された。すなわち，第2回目操業においては，発射しはじめるとから8銃目までは全く発射が認められず，9銃目から14銃目かかけて発射が認められはじめ，終の15銃目以後にかなり多くの発射が認められた。それに対し，第3回目操業においては，第2回目操業と異なり，2銃目かすぐに発射が認められ，また他方では第2回目操業と似て，前半の10銃による発射銃数に比べて，後半の10銃による発射銃数の方が多いということか認められた。

上述のように，この操業においては，最初に発射された銃が最初に発射され，最初に発射された銃が最後に発射された。そこで発射および接続が一様でなく，発射のうち平均発射時期は一義的に決まる。この各銃の発射時間と発射銃数との関係を2銃毎にまとめて図示したもののがFig 6である。この図の横軸は，各銃毎の発射銃数であるが，それは同時に，各銃の発射された順序にも応じた。

St 17の第2回目操業の発射前半において発射が認められなかった場合として，主として次の2つが考えられる。すなわち，その第1は，この操業では練習も時間が殆どかかったために，発射前後発射の抜きかかった前半の銃の発射効率がきわめて低下したということである。またその第2は，この操業が行われた当時の発射の内では，練習中および操業の前半ではまだサキュマスが装備される有効な発射銃でなかったために効率が低く，発射の前半にかかった頃から発射銃（日出前10 ～ 15分以降）に入ったりために，発射効率が上昇したということである。
第3回操業において操縦の前半の誤解が後半のそれより少なかったことは、上記の第1の原因に合致するように思われるが、他方、2錨目からすでに操縦が認められたことは、第1の原因に反すると考えるのも考えられる。第3回目操業の前半の誤解が少なかったことを、第2の原因からただ中に説明することはできない。しかしの場合では、有効時刻帯の開始ではないが、有効時刻帯（日出後18〜20分以前）であったために、投縄の後半の錨（すなわち操縦の前半の錨）はすでに有効時刻帯からはずれてしまい、その結果投縄の前半の錨（すなわち操縦の後半の錨）に比べて誤解率が低かったのではないかということである。

上述の誤解も時間と有効時刻帯の２つの原因のいずれか主なものであるかを確かめるために、5月18日のSt.18の朝方操縦では、1時間前後の0〜2時間の小さな時刻帯を、少しずらして日出の方に近づけた。すなわち第2回目操縦が、最も有効と思われた時刻帯（日出15分前から日出20分後）に対応するように、第2回目操縦の操縦開始を日出に近い時間に設定した計画が立てられた。実際の第2回目操縦は、操縦開始日出8〜20分前から操縦終了日出40〜60分後の約1時間であった。

このSt.18における調査結果は、Table 2、Fig.5およびFig.6に示されている。誤解尾数は、第1回目操縦では僅か1尾であり、第2回目操縦では26尾であり、また第3回目操縦では再び僅か1尾であった。すなわち大部分の誤解は第2回目操縦において認められて、第1回目と第3回目は有効時刻帯からはずれたのではないかと判断された。このSt.18の結果は上記の第2の原因の妥当性を裏づけた。St.18の第2回目操縦における操縦の主なもののは、有効時刻帯の真中に位置するために、操縦直後に操縦しても、1錨目からすでにサケ・マスの誤解が認められるのではないかという期待がもたらされたが、調査結果はその期待に合致した（Fig.6）。しかし、Fig.6に見られるように、このSt.18-2の場合にもやはり、操縦の前半の錨の誤解は後半のそれより少ない。従って誤解も時間という要因を必ずしも全面的に否定することはできない。なお、今後この問題を検討する場合には、各錨が敷設されている空間的拡がりと調節して、サケ・マスの小さい群れの存在の問題が合せて考慮される必要があるであろう。

綱扱時時間の効果と関連して、はえなわの海中敷設時間の長さと1錨当たり誤解尾数の関係がFig.7-1およびFig.7-2に示されている。この図では逐次操縦以外の合計14回の朝方又は夜間のはえなわ調査（St.23を除く）の結果が示されている。これら14回の朝方は逐次操縦の内訳は、30錨使用された場合が9回、60錨使用された場合が3回、また80錨使用された場合が2回であった（Table 1, 2）。いずれの場合も、操縦終了後約30〜40分間の綱扱時時間をおいて操縦が開始された。操縦開始から操縦終了までの全所要時間は、30錨の場合が約2時間、60錨の場合が約4時間、また80錨の場合が約5時間におよんだ。Fig.7-1およびFig.7
-2において見られるように、いつれの場合にも、小さい魚群の存在を示唆するような各鈍毎の漁獲尾数の高低の変化は認められるにしても、はなっての魚中数値時間の長さに伴って漁獲尾数が増加するという傾向は認められないと。この図において、漁獲に平行な実験は各観察点における平均鈍当たり漁獲尾数を示す。また漁獲に平行な点検は、標識放流のために使用され、各鈍毎の漁獲記録がとられなかった部分の平均鈍当たり漁獲尾数を示す。従ってSt.3の場合は揚線のはじめ（点線の部分）よりもそれ以降の鈍の漁獲尾数が若干多いことが認められるが、St.2およびSt.12の場合には、その反対に揚線のはじめ（点線の部分）よりもそれ以降の鈍の漁獲尾数が若干多いことが認められる。従ってこれら14回の場合から、30分間以内の揚線も時間の効果に結びつくような結果を得ることはできないが、すくなくとも30分間以上の魚中数値時間は、鈍当たり尾数の増加に寄与しないと結論することができる。

上述の朝方連続操業の結果得られた日出前後の短い有効時刻帯の存在に関連して提起された30分間以内の揚線も時間の効果の問題は、実際に揚線を行う操業によって解決することができる。そのため、5月24日にSt.23において、はなて80鈍を使用した朝方操業を試みた。その操業計画は、日出1時間30分前に揚線を開始し、揚線終了後30分間の揚線を行ない、日出40分前に操業を開始するというものであった。その結果は、Fig.8に示されている。すなわち、十分な揚線も時間の影響を示したのにかかわらず、揚線開始から15鈍目までは全く漁獲が認められなかった。漁獲が認められはじめたのは、揚線開始後日出前20分に相当する16鈍目からであり、最も漁獲の多かったところは、揚線開始日出直接に相当する鈍であった。このSt.23における調査結果は、St.17とSt.18において認められた朝方ははなての有効時刻帯が日出直前直後に存在し、時間的にかなり短いものであるという結果を一層裏づけた。

(ii) 夕方における短時間ははなて連続操業

5月19日のSt.19における夕方連続操業は、1時間単位の3つの小さな時刻帯を設け、第2回目操業の揚線終了が日没20分後にできるよう計画された。実際には第2回目操業の揚線は、日没15分後に終了した。各操業の結果はTable2およびFig.9に示されている。日没前に第1回目操業の漁獲尾数は4尾、日没をはさんだ第2回目操業の場合は21尾、また日没後の第3回目操業では漁獲は認められなかった。第1回および第2回目操業の各鈍毎の漁獲尾数には、朝方の場合のような有効時刻帯の開始を示す明瞭な傾向は認められなかった（Fig.10）。

5月20日のSt.20における夕方連続操業では、日没前後の有効時刻帯を調べるために、第2回目操業の揚線開始が日没5分に一致するように計画が立てられ、1時間単位の小さな時刻帯が日没直前日没後に設けられた。操業の結果、日没前の第1回目操業における漁獲尾数は
5尾であり、日没後の第2回目撃の1尾に比べて多かった（Table 2, Fig. 9)。

St. 19およびSt. 20の夕方連続観察の結果、はなわの有効時刻帯は、日没後まもなく終了するが示唆された。しかし、その有効時刻帯の開始が、日没前との程度をむしろ一部不連続性を明らかにすることができなかった。なお、これら夕方連続観察の場合の鈍または漬漬尾数が、朝方連続観察の場合のそれに比較して少ないことが注目される（Table 2）。St. 20の調査の翌日である5月21日に、はな同一地点で行った朝方の更に日没では、2.5尾の鈍または漬漬尾数が記録されており、この場所における魚群密度がそれほど低かったことは考えられない。また、St. 20の調査の翌々日である5月22日に、はな同一地点で行った朝方の更に日没は、鈍または漬漬尾数が8.0分で観察され、1.7尾の鈍または漬漬尾数が記録された。これらのSt. 21および22の結果とSt. 19および20の結果を合わせて考えると、朝方の更に日没の鈍または漬漬の場合には、30分以内の観察時間の有無による影響が、朝方のそれに比べて大きいのかもしれないと思われる。この問題は、魚の捕獲状態や小さい群れの存在の問題とともに、今後十分に検討されるべきである。

はなわの有効努力量と海中敷設時間

はなわの努力量の標準化を考える場合に考慮されるべき要素として、1錨中の鉤数、鉤の大きさ、その間隔、枝系の長さや太さ等の漬漬の構造に関する事項とともに、鉤の種類や大きさ、使用漬漬数、投鉤方向などの漬漬の使用方法に関する事項がある。この使用方法に関する要素のうち1つとして、漬漬の敷設時刻および撤設時間の長さという問題がある。

すでに述べたように、この調査の結果、次の2つのことが得られた。すなわち、第1に表層ははなわのサケ・マスに対する漬漬効率は朝方および夕方に高いが、それによる時刻帯は、日出前後および日没前後のかなり短い時間のものであることが認められた。また第2に、有効時刻帯が短いことと関連して、はなわの海中敷設時間は、少なくとも30分間以上長くても、それは漬漬尾数の増加には結びつかないことが推察された。すなわち、はなわの努力量の標準化に際しては、どの程度の時間にわたって海中に敷設されたかということが問題になる。むしろ使用漬漬数のうち何％が有効時刻帯に合致して敷設されたかということは問題になると考えられる。30分間以内に敷設時間の長さの効果は、この調査においては十分に確かめることができなかった。

そこで使用されたのはなわの各錨が、有効時刻帯の中で、どの位海中敷設されていったかということを有効努力量として採用し、それに基づいて単位有効努力量当たり漬漬尾数の算出を試みた。この場合、日出（又は日没）の前後で15分の区を附けてものを有効時刻帯と仮定した。

Fig. 11は、St. 17, 18、および28の場合を例として図示したものである。この図の横軸は、日出に基準を合わせた時間の長さであり、縦軸は、漬漬の順序に従った錨番号である。この図において、投鉤開始（A）、投鉤終了（B）、漬漬開始（C）、漬漬終了（D）の4点によって作
われた梯形の面積が、使用されたはえなわの全錨の船中敷設時間を表わすと見做す。またその梯形と、日出前後15分の有効時間帯とが重なり合う部分の面積が、有効効力値を表わすと見做す。

このようにして、各調査点における有効効力値を算出し、それを使用したときの単位有効効力値当たり漁獲尾数を、修正前の生の効率を使用したときの単位有効効力値当たり漁獲尾数と比較したのが、Table 3である。この場合の有効効力値を算出するにあたって必要な資料はすべてTable 2に示されている。またこのTable 3に示した調査点は、いずれも近接した時期と場所におけるものであり、同一魚群を対象としたと判断される調査結果を相互に比較することも有用であるよう。

このTable 3に基づいて、同一地点の朝方ははえなわの結果を比較すると、St. 12とSt. 14の間では、修正前のCPUE（Catches per unit effort）が100：32であったのに対して、修正後は100：100とほとんど同じ値となることが認められる。同様にSt. 21とSt. 23の間では、修正前のCPUEが100：22であったのに対して、修正後は100：38とかなり近似した値となることが認められる。すなわち、単位効力値当たり漁獲尾数が、変動する要因の1つとして、表層はえなわのサケ・マスに対する有効時刻帯とはかなわの敷設時刻との合数がされる考えられ、その要因を基準化することにより、単位有効効力値当たり漁獲尾数が、対象魚群の相対的密度を表わす数値としての有効性を高めることになると推論できる。

また時期・場所が近接した調査点間の朝方ははえなわのCPUEと夕方ははえなわのCPUEの比較を、St. 5と6、St. 10と11、St. 15と16、およびSt. 21と22の4つの場合について行なった。修正前は、朝方ははえなわのCPUEを100とした場合の夕方ははえなわのCPUEは、52から100までの間にあり、その平均値は70:8、変動係数は8:5.7であった。修正後は、朝方ははえなわのCPUEを100とした場合の夕方ははえなわのCPUEは、42から81までの間となり、その平均値は62:3、変動係数は27:7となることが認められる。これらの4つの場合における、同一地点での朝方ははえなわと夕方ははえなわとの比較を通じて、朝方ははえなわの漁獲効率が、夕方ははえなわの漁獲効率より高いであろうという推察ができる。しかし、その両者の漁獲効率の比がいくらであるかについて、測定することはできない。ただ、St. 10とSt. 11の場合は、修正前は朝方ははえなわのCPUEが夕方ははえなわのCPUEよりむしろ若干低かったのに対して、修正後は、他の場合と同様に、朝方ははえなわのCPUEが夕方ははえなわのCPUEより高くなったことが認められる。またSt. 5とSt. 6の場合に修正前より修正後の方がかえって朝方と夕方の差が大きくなったが、それでも各値の1/4の場合を除外してみた場合には、同一地点における朝方ははえなわのCPUEに対する夕方ははえなわのCPUEの値の変動は、修正前より修正後の方がやまやが大きくなったことが認められる。これらの理由から判断すると、修正前のものよりも、修正後のものの方が、朝方ははえなわと夕方ははえなわの効率の比には近いのではないかと推察できる。
しかし、いずれの場合もその変動の幅はかなり大きく、今後の調査にまつところが多い。
なお、このような朝方と夕方という時刻の違いによる漁獲効率の違いが何故生ずるのかという問題については、今後、魚の換気習性をととの関連において十分検討される必要があるよう。

要約

1. 1969年4月から5月にかけて、北西太平洋の亜熱帯境界近辺において、1隻の調査船若潮丸によって、サケ・マスの生態調査が行なわれた。

2. 1日を朝方、昼間、夕方、夜間の4つの時刻帯に分け、それぞれの時刻帯内において、はねわおよび流し網の短時間同時操業が行なわれた。その結果、朝方および夕方においては、はねわ流し網ともに効果的にサケ・マスを漁獲したのに対し、昼間においては、流し網によってサケ・マスが漁獲されたにもかかわらずはねわによっては漁獲されず、また夜間においては、はねわも流し網もともにサケ・マスに対する漁獲率が低下したことが認められた。

3. 朝方および夕方において、短時間はねわ連続操業が行なわれた。その結果、はねわのサケ・マスに対する有効時効帯は、日出前か日没の直前直後のかなり短い時間のものであることが認められた。

4. 表層流し網によってサケ・マスが漁獲される有効時効帯は、日没から日出までのかなり長い時間のものであると推定された。それに対し、はねわによる漁獲率は、漁具の船中敷設時間の長さよりも、むしろ時間的に短い有効時効帯に合致して漁獲されたか否かによって左右されることが認められた。
文献

1) 石田昭夫、伊藤 準、大迫正尚（1966）：網目抗折性を除去した調査用サケ・マス刺網の製作、北水研報告、Vol. 31

7) 三島清吉、斎藤泰二、島崎信三（1966）：サケ・マスの鉛直的な日周期移動の研究—1. 表層刺網による漁獲傾向について（1）。日水業誌、Vol. 32, No. 11.

10) 高木健治（1967）：北西太平洋の亜寒帯境界附近における4〜5月のサケ・マスの分布について。北水研報告、Vol. 33.

11) 高木健治・石田昭夫（1969）：サケ・マスはなわおよび流し網の同時操業においてえられた二・三の知見。INPFC. Doc. No. —

12) 田口孝三郎（1968）：サケ・マスの羅網行動に影響する2, 3の要因について。Vol. 29, No. 5.
Doc. 1199

Fig. 1 FISHING STATIONS OF THE WAKASHIO MARU IN APRIL AND MAY, 1969.

○ Longlines ● Gillnets ○ Longlines & Gillnets

170E 160E 150E 140E

0A 50A

May 24 Apri 24 St. 1 St. 2 St. 3 St. 4

Skt 5 17-23 Skt 5 12-18 Skt 5 4-11
Fig. 2 COMPARISON OF C.P.U.E. OF LONGLINES AND GILLNETS AT DIFFERENT TIMES OF DAY.
Fig. 3 C.F.U.E. OF LONGLINES AND GILLNETS AT EACH STATION WHERE OPERATIONS WERE CARRIED OUT IN THE MORNING, DAY, EVENING OR NIGHT.

- Longlines
- Sockeye
- Chum
- Pink
- Coho
- Chinook
Fig. 4 HYPOTHESIS ON RELATIVE EFFICIENCY OF LONGLINES AND GILLNETS AT DIFFERENT TIMES OF DAY.
Fig. 5 VARIATIONS IN CATCHES PER HACHI AT DIFFERENT TIMES OF THE MORNING.

↑ Sunrise ■■ Chum ■ Pink

CPUE

ST.17-1 ST.17-2 ST.17-3
1.5
1.0
0.5
0.0

ST.18-1 ST.18-2 ST.18-3
1.5
1.0
0.5
0.0
Fig. 6 VARIATIONS IN CACHES OF EACH TWO HACHI WHICH WERE SOAKED IN THE SEA DURING DIFFERENT HOURS AT MORNING OPERATIONS.

* Hachi hauled at sunrise
Fig. 7-1 RELATIONS BETWEEN C.P.U.M. AND FISHING HOURS OF EACH TWO HACHI.

G.P.U.M.

ST.12

ST.4

ST.3

ST.2

ST.1

HOURS

0.00 0.40 1.00 1.40 2.00 2.40 3.00 3.40 4.00 4.40
Fig. 7-2 RELATIONS BETWEEN u, F, U, S, AND FISHING HOURS OF EACH TWO HACHI.
Fig. 8 VARIATIONS IN CATCHES OF EACH TWO HACHI WHICH WERE SOAKED IN THE SEA DURING DIFFERENT HOURS AT THE TRIAL MORNING OPERATION.

†: Hachi hauled at sunrise
Fig. 9 VARIATIONS IN CATCHES PER HACHI DIFFERENT TIMES OF THE EVENING.

Sunset Chum Pink Chinook

ST.19-1 ST.19-2 ST.19-3

ST.20-1 ST.20-2
Fig. 10 VARIATIONS IN CATCHES OF EACH TWO HACHI WHICH WERE SOAKED IN THE SEA DURING DIFFERENT HOURS AT EVENING OPERATIONS.

↓: Hachi hauled at sunset
Fig. 11 DIAGRAMS OF MORNING OPERATIONS OF LONGLINES AND ESTIMATIONS OF
EFFECTIVE FISHING EFFORT.
Table 1~3
Table 1. Data on operations of the Wakashi-Maru in

<table>
<thead>
<tr>
<th>St. No.</th>
<th>Date</th>
<th>Location</th>
<th>Longline</th>
<th>No. of Gear</th>
<th>SET</th>
<th>Haul (Hachi)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Lat.(N)</td>
<td>Long.(E)</td>
<td>Operation</td>
<td>Time(Japan Time)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Apr 24-24</td>
<td>40-40</td>
<td>164-30</td>
<td>0.212</td>
<td>0.306</td>
<td>0.349-0.629</td>
</tr>
<tr>
<td>2</td>
<td>Apr 25-25</td>
<td>42-51</td>
<td>165-09</td>
<td>0.155</td>
<td>0.237</td>
<td>0.327-0.604</td>
</tr>
<tr>
<td>3</td>
<td>Apr 26-26</td>
<td>42-19</td>
<td>167-23</td>
<td>0.208</td>
<td>0.250</td>
<td>0.338-0.551</td>
</tr>
<tr>
<td>4</td>
<td>Apr 27-30</td>
<td>43-20</td>
<td>175-10</td>
<td>0.154</td>
<td>0.213</td>
<td>0.246-0.349</td>
</tr>
<tr>
<td>5</td>
<td>May 1-1</td>
<td>43-20</td>
<td>175-10</td>
<td>0.154</td>
<td>0.213</td>
<td>0.246-0.349</td>
</tr>
<tr>
<td>6</td>
<td>May 1-1</td>
<td>43-23</td>
<td>175-13</td>
<td>0.542</td>
<td>1.607</td>
<td>1.635-1.741</td>
</tr>
<tr>
<td>7</td>
<td>May 3-3</td>
<td>43-24</td>
<td>175-28</td>
<td>0.854</td>
<td>6.917</td>
<td>0.950-1.049</td>
</tr>
<tr>
<td>8</td>
<td>May 4-4</td>
<td>43-50</td>
<td>175-50</td>
<td>20.38</td>
<td>21.01</td>
<td>2.05-2.213</td>
</tr>
<tr>
<td>9</td>
<td>May 5-6</td>
<td>43-56</td>
<td>175-56</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>10</td>
<td>May 6-7</td>
<td>44-47</td>
<td>176-00</td>
<td>1.527</td>
<td>1.547</td>
<td>1.621-1.725</td>
</tr>
<tr>
<td>11</td>
<td>May 7-7</td>
<td>44-47</td>
<td>176-00</td>
<td>0.145</td>
<td>0.206</td>
<td>0.239-0.346</td>
</tr>
<tr>
<td>12</td>
<td>May 9-9</td>
<td>44-02</td>
<td>170-02</td>
<td>0.140</td>
<td>0.222</td>
<td>0.252-0.503</td>
</tr>
<tr>
<td>13</td>
<td>May 10-11</td>
<td>44-33</td>
<td>170-16</td>
<td>0.905</td>
<td>0.926</td>
<td>0.955-1.055</td>
</tr>
<tr>
<td>14</td>
<td>May 11-12</td>
<td>43-50</td>
<td>170-20</td>
<td>0.140</td>
<td>0.203</td>
<td>0.236-0.336</td>
</tr>
<tr>
<td>15</td>
<td>May 12-12</td>
<td>43-58</td>
<td>170-12</td>
<td>1.695</td>
<td>1.626</td>
<td>1.700-1.800</td>
</tr>
<tr>
<td>16</td>
<td>May 14-14</td>
<td>43-47</td>
<td>170-12</td>
<td>1.695</td>
<td>1.626</td>
<td>1.700-1.800</td>
</tr>
<tr>
<td>17-1</td>
<td>May 17-17</td>
<td>43-00</td>
<td>164-56</td>
<td>0.388</td>
<td>0.538</td>
<td>0.507-0.139</td>
</tr>
<tr>
<td>17-2</td>
<td>May 17-17</td>
<td>43-00</td>
<td>164-56</td>
<td>0.142</td>
<td>0.156</td>
<td>0.200-0.244</td>
</tr>
<tr>
<td>17-3</td>
<td>May 17-17</td>
<td>43-00</td>
<td>164-56</td>
<td>0.245</td>
<td>0.300</td>
<td>0.303-0.353</td>
</tr>
<tr>
<td>18-1</td>
<td>May 18-18</td>
<td>43-10</td>
<td>165-05</td>
<td>0.116</td>
<td>0.132</td>
<td>0.136-0.213</td>
</tr>
<tr>
<td>18-2</td>
<td>May 18-18</td>
<td>43-10</td>
<td>165-05</td>
<td>0.215</td>
<td>0.229</td>
<td>0.236-0.315</td>
</tr>
<tr>
<td>18-3</td>
<td>May 18-18</td>
<td>43-10</td>
<td>165-05</td>
<td>0.316</td>
<td>0.330</td>
<td>0.324-0.426</td>
</tr>
<tr>
<td>19-1</td>
<td>May 19-19</td>
<td>43-02</td>
<td>164-59</td>
<td>1.541</td>
<td>1.556</td>
<td>1.557-1.633</td>
</tr>
<tr>
<td>19-2</td>
<td>May 19-19</td>
<td>43-02</td>
<td>164-59</td>
<td>1.637</td>
<td>1.653</td>
<td>1.655-1.735</td>
</tr>
<tr>
<td>19-3</td>
<td>May 19-19</td>
<td>43-02</td>
<td>164-59</td>
<td>1.737</td>
<td>1.751</td>
<td>1.755-1.836</td>
</tr>
<tr>
<td>20-1</td>
<td>May 20-20</td>
<td>43-02</td>
<td>165-02</td>
<td>1.622</td>
<td>1.636</td>
<td>1.639-1.710</td>
</tr>
<tr>
<td>20-2</td>
<td>May 20-20</td>
<td>43-02</td>
<td>165-02</td>
<td>1.711</td>
<td>1.725</td>
<td>1.729-1.807</td>
</tr>
<tr>
<td>21</td>
<td>May 21-21</td>
<td>43-01</td>
<td>165-07</td>
<td>0.205</td>
<td>0.224</td>
<td>0.258-0.352</td>
</tr>
<tr>
<td>22</td>
<td>May 22-22</td>
<td>43-01</td>
<td>165-08</td>
<td>1.611</td>
<td>1.631</td>
<td>1.712-1.815</td>
</tr>
<tr>
<td>23</td>
<td>May 23-24</td>
<td>43-01</td>
<td>165-03</td>
<td>0.100</td>
<td>0.120</td>
<td>0.150-0.250</td>
</tr>
</tbody>
</table>
April and May, 1969.

<table>
<thead>
<tr>
<th>Gillnet (Combined Mesh)</th>
<th>(Japan Time)</th>
<th>Astromom Twilight Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation Time (Japan Time)</td>
<td>Set</td>
<td>Haul</td>
</tr>
<tr>
<td>01.32—01.51</td>
<td>04.28—05.23</td>
<td>50</td>
</tr>
<tr>
<td>15.24—15.40</td>
<td>18.05—18.57</td>
<td>50</td>
</tr>
<tr>
<td>08.36—08.52</td>
<td>11.10—12.05</td>
<td>50</td>
</tr>
<tr>
<td>16.32—16.49</td>
<td>02.34—03.29</td>
<td>50</td>
</tr>
<tr>
<td>15.07—15.25</td>
<td>04.15—05.17</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08.48—09.03</td>
<td>11.10—12.01</td>
<td>50</td>
</tr>
<tr>
<td>01.55—02.13</td>
<td>04.38—05.33</td>
<td>50</td>
</tr>
<tr>
<td>01.21—01.38</td>
<td>04.07—05.00</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.55—16.10</td>
<td>18.48—19.42</td>
<td>50</td>
</tr>
<tr>
<td>16.03—16.20</td>
<td>03.10—04.11</td>
<td>50</td>
</tr>
</tbody>
</table>

1) May 6, 2) May 5, 3) May 7, 4) May 6
Table 2: Salmon catches and operation style of the

<table>
<thead>
<tr>
<th>St.No.</th>
<th>Date</th>
<th>Location</th>
<th>Longline</th>
<th>No. of Gear</th>
<th>Salmon Catches</th>
<th>No. of Gear</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Int. †</td>
<td>Log. †</td>
<td>(Hachi)</td>
<td>Chum</td>
</tr>
<tr>
<td>1</td>
<td>Apr. 24-24</td>
<td>40-40</td>
<td>164-30</td>
<td>80</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Apr. 25-25</td>
<td>42-31</td>
<td>165-16</td>
<td>80</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Apr. 26-26</td>
<td>42-19</td>
<td>167-23</td>
<td>60</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>Apr. 30-30</td>
<td>42-51</td>
<td>175-09</td>
<td>60</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>May 1-1</td>
<td>43-20</td>
<td>175-10</td>
<td>30</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>May 1-1</td>
<td>43-23</td>
<td>175-13</td>
<td>30</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>May 3-3</td>
<td>43-24</td>
<td>175-28</td>
<td>30</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>May 4-4</td>
<td>43-50</td>
<td>175-50</td>
<td>25</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>May 5-6</td>
<td>43-56</td>
<td>175-56</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>10</td>
<td>May 6-7</td>
<td>44-47</td>
<td>176-00</td>
<td>80</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>May 7-7</td>
<td>44-47</td>
<td>176-00</td>
<td>80</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>May 9-9</td>
<td>44-02</td>
<td>170-02</td>
<td>60</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>May 10-10</td>
<td>44-33</td>
<td>170-16</td>
<td>30</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>May 11-11</td>
<td>44-03</td>
<td>170-00</td>
<td>30</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>May 12-12</td>
<td>43-58</td>
<td>170-20</td>
<td>30</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>May 14-15</td>
<td>43-47</td>
<td>170-12</td>
<td>30</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>May 16-16</td>
<td>43-00</td>
<td>164-56</td>
<td>20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>May 17-17</td>
<td>43-00</td>
<td>164-56</td>
<td>20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>May 17-17</td>
<td>43-00</td>
<td>164-56</td>
<td>20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>May 18-18</td>
<td>43-10</td>
<td>165-05</td>
<td>20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>May 18-18</td>
<td>43-10</td>
<td>165-05</td>
<td>20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>May 18-18</td>
<td>43-10</td>
<td>165-05</td>
<td>20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>May 19-19</td>
<td>43-02</td>
<td>164-59</td>
<td>20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24</td>
<td>May 19-19</td>
<td>43-02</td>
<td>164-59</td>
<td>20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>May 19-19</td>
<td>43-02</td>
<td>164-59</td>
<td>20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>26</td>
<td>May 20-20</td>
<td>43-02</td>
<td>165-02</td>
<td>20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>27</td>
<td>May 20-20</td>
<td>43-02</td>
<td>165-02</td>
<td>20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>28</td>
<td>May 21-21</td>
<td>43-01</td>
<td>165-07</td>
<td>30</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>29</td>
<td>May 22-22</td>
<td>43-01</td>
<td>165-08</td>
<td>30</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>30</td>
<td>May 23-24</td>
<td>43-01</td>
<td>165-08</td>
<td>30</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

M.L.L. ••• Morning Longlines
E.L.L. ••• Evening Longlines
D.L.L. ••• Day Longlines
N.L.L. ••• Night Longlines

M.G.N. ••• Morning Gillnets
E.G.N. ••• Evening Gillnets
D.G.N. ••• Day Gillnets
N.G.N. ••• Night Gillnets

—28—
Wakashio-maru in April and May, 1969

<table>
<thead>
<tr>
<th>Gill-net (Combined Mesh)</th>
<th>No. of Hours of Operating Duration</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salmon Catches</td>
<td>Longline</td>
<td>Gill-net</td>
</tr>
<tr>
<td>Sockeye Chum Pink Coho Chin Total</td>
<td>Set</td>
<td>Wait</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>0 3 1 1 0 5</td>
<td>19</td>
<td>3 3</td>
</tr>
<tr>
<td>0 1 0 0 0 0</td>
<td>23</td>
<td>3 3</td>
</tr>
<tr>
<td>0 1 1 2 0 13</td>
<td>23</td>
<td>0 4</td>
</tr>
<tr>
<td>1 4 13 4 7 1 6 6</td>
<td>23</td>
<td>0 4</td>
</tr>
<tr>
<td>0 1 0 2 0 1 0 3 1</td>
<td>20</td>
<td>3 4</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1 0 0 0 0 0 1</td>
<td>20</td>
<td>2 9</td>
</tr>
<tr>
<td>1 1 1 0 0 3</td>
<td>20</td>
<td>2 9</td>
</tr>
<tr>
<td>3 1 5 0 0 9</td>
<td>23</td>
<td>3 3</td>
</tr>
<tr>
<td>0 8 2 3 0 1 2 7</td>
<td>21</td>
<td>3 4</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>0 5 2 5 0 0 3 0</td>
<td>20</td>
<td>4 1</td>
</tr>
<tr>
<td>0 5 5 7 0 0 6 2</td>
<td>20</td>
<td>3 0</td>
</tr>
</tbody>
</table>

S.G.N. ***Standard Style Operation of Gillnets
S.M.L.L. ***Continued Short-time Operation of Morning Longlines
S.E.L.L. ***Continued Short-time Operation of Evening Longlines
Table 3. Estimations of effective fishing effort of operations at the same location

<table>
<thead>
<tr>
<th>St. No.</th>
<th>Location</th>
<th>Date</th>
<th>Operation</th>
<th>Salmon Catches</th>
<th>Fishing Effort (Nachi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lat (N)</td>
<td>Long (E)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>48-20</td>
<td>May 1</td>
<td>Morning L.L.</td>
<td>52</td>
<td>30</td>
</tr>
<tr>
<td>6</td>
<td>48-23</td>
<td>May 1</td>
<td>Evening L.L.</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td>10</td>
<td>44-47</td>
<td>May 6</td>
<td>Evening L.L.</td>
<td>61</td>
<td>30</td>
</tr>
<tr>
<td>11</td>
<td>44-47</td>
<td>May 7</td>
<td>Morning L.L.</td>
<td>57</td>
<td>30</td>
</tr>
<tr>
<td>12</td>
<td>44-02</td>
<td>May 9</td>
<td>Morning L.L.</td>
<td>123</td>
<td>60</td>
</tr>
<tr>
<td>14</td>
<td>44-03</td>
<td>May 11</td>
<td>Morning L.L.</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>15</td>
<td>48-58</td>
<td>May 12</td>
<td>Morning L.L.</td>
<td>23</td>
<td>30</td>
</tr>
<tr>
<td>16</td>
<td>48-47</td>
<td>May 14</td>
<td>Evening L.L.</td>
<td>12</td>
<td>30</td>
</tr>
<tr>
<td>21</td>
<td>48-01</td>
<td>May 21</td>
<td>Morning L.L.</td>
<td>75</td>
<td>30</td>
</tr>
<tr>
<td>22</td>
<td>48-01</td>
<td>May 22</td>
<td>Evening L.L.</td>
<td>52</td>
<td>30</td>
</tr>
<tr>
<td>23</td>
<td>48-01</td>
<td>May 24</td>
<td>Morning L.L.</td>
<td>24</td>
<td>30</td>
</tr>
</tbody>
</table>
Longines and comparisons of C. P. U. E and C. P. U. E. between morning and evening

<table>
<thead>
<tr>
<th>C. P. U. E.</th>
<th>Estimated Effective Effort</th>
<th>Amended C. P. U. E.</th>
<th>Between Morning Operatione</th>
<th>Between Morning and Evening</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>C. P. U. E. Amend. GRUE</td>
<td>C. P. U. E. Amend. GRUE</td>
</tr>
<tr>
<td>1.77</td>
<td>23.1</td>
<td>2.29</td>
<td>-100:55</td>
<td>-100:42</td>
</tr>
<tr>
<td>0.97</td>
<td>30.0</td>
<td>0.97</td>
<td>-100:107</td>
<td>-100:71</td>
</tr>
<tr>
<td>2.03</td>
<td>2.65</td>
<td>2.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.90</td>
<td>1.75</td>
<td>3.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.05</td>
<td>5.45</td>
<td>2.26</td>
<td>-100:35</td>
<td>-100:100</td>
</tr>
<tr>
<td>0.67</td>
<td>2.8</td>
<td>2.25</td>
<td>-100:53</td>
<td>-100:55</td>
</tr>
<tr>
<td>0.77</td>
<td>8.0</td>
<td>0.77</td>
<td>-100:52</td>
<td>-100:55</td>
</tr>
<tr>
<td>0.40</td>
<td>2.88</td>
<td>0.42</td>
<td>-100:55</td>
<td>-100:55</td>
</tr>
<tr>
<td>2.50</td>
<td>2.64</td>
<td>2.64</td>
<td>-100:59</td>
<td>-100:81</td>
</tr>
<tr>
<td>1.73</td>
<td>2.42</td>
<td>2.15</td>
<td>-100:32</td>
<td>-100:87</td>
</tr>
<tr>
<td>0.80</td>
<td>1.05</td>
<td>2.29</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>